Mark Scheme - 1.2 Basic Ideas about Atoms

1.

(a)	Oil is non-renewable / will run out (1)							
	Contribution of CO ₂ to global warming (1)							
	Oil h	as other important uses	(1)	[2]				
	(Max	(Maximum 2 marks)						
(b)	 Power stations / fossil fuels used to generate the electricity needed to make H₂ (1) 							
		Resulting in CO ₂ formation (global warming) / acid rain (1						
		Manufacture of car produces pollution (Maximum 2 marks)	on (1)	[2]				
		QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning [1]						
	(ii)	explosively						
	(Accept agree if valid reason given e.g. in terms of live being lost)							
(c)	(i)	Hydrogen since frequency is inverse wavelength / smaller wavelength	ly proportion	al to [1]				
	(ii) Hydrogen since energy is proportional to frequency / greater frequency / E = hf							
(d)	In Ne greater shielding of outer electron (1) outweighs larger nuclear charge (1) / He has greater effective nuclear charge (1) / He outer electron closer to nucleus (1)							
	- max 1 if no reference to <i>outer</i> electron							
	(Max	ximum 2 marks)						
(e)	(i)	²¹⁸ Po		[1]				
	(ii) Since radon is a gas / inhaled, α particles will be giver in the lungs (which may cause cancer)							

Total [12]

(a)
$$M_r$$
 (PbS) = 239.1 M_r (PbO) = 223 (1)

Moles of PbS = 20,000 ÷ 239.1 = 83.65 moles (1)

(b) (i) Sulfur dioxide: Acid rain (1)

- (ii) I. Sum of M_r of reactants = 223 + 28 = 251 (1)

 Atom economy = (207 ÷ 251) x 100 = 82.5% (1) [2]
- (ii) II. Method 1 as higher atom economy means less waste / more useful product [1]

- (ii) All three arrows labelled correctly, as shows below, gives two marks
 - Any two arrows labelled correctly gives one mark [2]

- γ-radiation is high energy / frequency electromagnetic waves (1)
 It affects neither atomic number nor mass number / it changes neither
 - the number of protons nor neutrons (1) [2]
- (iv) 31.8 hours = 3 half lives (1)

(d)
$$A_r = [(206.0 \times 25.48) + (207.0 \times 22.12) + (208.0 \times 52.40)] \div 100 (1)$$

 $A_r = 207.3 (1)$

1 mark for correct significant figures (answer must be reasonable) [3]

Total [19]

3.	(a)		Electrons within atoms occupy fixed energy lev increasing energy / nitrogen has electrons in to 1s ² 2s ² 2p ³				
			Electrons occupy atomic orbitals within these s The first shell in nitrogen has s orbitals and the orbitals (1)				
			A maximum of two electrons can occupy any of Each's orbital in nitrogen contains two electrons				
			Each with opposite spins	(1)			
3.			Orbitals of the same type are grouped to gethe are three p orbitals in nitrogen's p sub-shell	r as a sub-shell/There (1)			
			Each orbital in a sub-shell will fill with one electron before pairing starts / In nitrogen's p sub-shell each orbital contains one electron (1)				
3.			(configuration mark + any 3 of above)		[4]		
					[-1		
			QWC The information is organised clearly an specialist vocabulary where appropriate	a conerently, using	[1]		
	(b)		Atomic spectrum of hydrogen is a series of line that get closer as their frequency increases (1) (credit possible from labelled diagram)				
			Lines arise from atom / electrons being excited electron jumping up to a higher energy level (1 falling back down and emitting energy (in the foradiation) (1) to the n = 2 level (1) (any three points for maximum 3 marks))			
			Since lines are discrete energy levels must hat energy emitted is equal to the difference betwee ΔE is a fixed quantity or quantum (1)				
	1.3				[6]		
	(c)	(i)	It has greater nuclear charge (1) but little / no extra shielding (1)		[2]		
		(ii)	In Be less shielding of outer electron outweighs smaller nuclear charge	(1) (1)			
			or				
			Be outer electron closer to nucleus Be has greater effective nuclear charge	(1) (1)	[2]		
		(iii)	I. Too much energy required to form B or ion		[1]		
			II. $K^{\dagger}(g) \rightarrow K^{\Xi^{\dagger}}(g) + e^{-}$		[1]		
			III. Value of 1 st and 3 rd I.E. will be higher	(1)	12343		
			Value of 2 nd I.E. will be smaller (accept large jump in I.E. value would be be electrons for 1 mark)	(1) etween 2 nd and 3 rd	[2]		

4.

- (a) (i) 12 [1]
 - (ii) 14 [1]
 - (iii) Percentage / abundance / ratio / proportion of each isotope [1]
- (b) (i) 0.125 g [1]
 - (ii) e.g. Cobalt-60 (1) in radiotherapy (1) / Carbon-14 (1) in radio carbon dating (1) / Iodine-131 (1) as a tracer in thyroid glands (1)[2]
- (c) (i) Atoms are hit by an electron beam / electrons fired from an electron gun (and lose electrons) [1]
 - (ii) To be able to accelerate the ions (to high speed) / so that they can be deflected by a magnetic field

 no credit for 'so that atoms can be deflected...'
 - (iii) They are deflected by a magnetic field / according to the m/z ratio [1]

(d) 1s 2s 2p 3s 3p

- (e) (i) $Mg_3N_2 + 6H_2O \longrightarrow 3Mg(OH)_2 + 2NH_3$ [1]
 - (ii) moles $Mg(OH)_2 = 1.75/58.32 = 0.0300 (1)$ moles $Mg_3N_2 = 0.0100 (1)$ mass $Mg_3N_2 = 0.01 \times 100.9 = 1.01 g (1)$ [3]

- must be 3 significant figures to gain third mark

Total [14]

5.

(iii) Moles
$$Ca(NO_3)_2 = 5.40 \times 10^{-3}$$
 (1)
Moles gas = 1.35×10^{-2} (1)
Volume gas = 0.324 dm³ (1) [3]

(c) Moles
$$Ca(NO_3)_2 = 0.0256$$
 (1)
Moles $H_2O = 0.102$ (1)
 $x = 4$ (1) [3]

Total [11]

(a)	same number of protons and electrons (1)				
	0, 1 and 2 neutrons (1)				
(b)	(i)	3 energy levels between $n = 2$ and $n = \infty$ becoming closer together first gap must be < that between $n = 1$ and $n = 2$	[1]		
	(ii)	any arrow pointing upwards (1)			
		from $n = 1$ to $n = \infty$ (1)	[2]		
(c)	(i)	visible	[1]		
	(ii)	(not correct because) Balmer series corresponds to energy transinvolving n = 2 (1)	sitions		
		for ionisation energy need Lyman series / energy transitions in $n = 1$ (1)	volving [2]		
(d)	(i)	$Q(g) \rightarrow Q^{*}(g) + e / accept any symbol$	[1]		
	(ii)	Group 6	[1]		
	(iii)	In T there is more shielding (1)			
		The outer electron is further from the nucleus (1)			
		The increase in shielding outweighs the increase in nuclear charge / there is less effective nuclear charge (1)	[3]		
		Legibility of text; accuracy of spelling, punctuation and gramma clarity of meaning QWC	nr; [1]		
		То	otal [14]		

(a)	C	В	D	E	Α	[2]		
	(1 n	(1 mark if one mistake e.g. A in wrong place)						
(b)	Z (1)							
	be a larg	Si is in Group 4 therefore large jump in ionisation energy would be after the fourth ionisation, not before it / W, X and Y have a large jump before the fourth ionisation energy so cannot be in Group 4 (1)						
						[2]		

8.

(b) (i)
$$\Delta T = 4.8 \,^{\circ}\text{C}$$
 (1)

$$\Delta H = -\frac{250 \times 4.2 \times 4.8}{0.125} = -40320 \text{ J mol}^{-1} / -40.3 \text{ kJ mol}^{-1} (2) [3]$$

√ for negative sign

✓ correct value with relevant units

(ii) e.g. The volume used was not precise in measurement as the readings on a beaker are only approximate (1)

The experiment was performed in a beaker and this was not insulated and heat was lost to the surroundings (1) [2]

there may be other acceptable answers here, for example based on slow dissolving

(ii)
$$(0.050 \times 24.0) = 1.20 \text{ (dm}^3)$$
 [1]

(iii) %
$$v/v = 1.20 \times 0.001 \times 100$$
 (1) = 0.06 (1) [2]

(d) An increase in the concentration of (aqueous) carbon dioxide causes the position of equilibrium to move to the right. (1)
This causes calcium carbonate to become aqueous calcium (and hydrogencarbonate) ions / dissolve (1)
weakening shells / causing difficulty in formation of shells (1)

[3]

Organisation of information clearly and coherently; using specialist vocabulary where appropriate QWC [1]

Total [15]

Total [19]

(a)	(i)	A helium (atom) nucleus / 2 protons and 2 neutrons / 4He2+	[1]
-----	-----	--	-----

(iii)
$$(4 \times 2.6) = 10.4$$
 [1]

(b) The frequency of the green line at 569 nm is HIGHER, than the frequency of the yellow-orange line at 589 nm. Another line is seen at 424 nm, this is caused by an electronic transition of HIGHER, energy than the line at 569 nm.
[1]

(c) (i)
$$Na_2CO_3$$
 $NaHCO_3$ $2H_2O$ 106 + 84 + 36 (1) \rightarrow 226 [1]

(or by other appropriate method - note mark is for the working)

(ii) Atom economy =
$$\frac{M_r \text{ required product} \times 100}{\text{Total '}M_r' \text{ of the reactants}}$$
 (1)

$$= 318 \times 100 = 70.4 / 70.35 (\%) (1)$$
 [2]

- (iii) Carbon dioxide is produced (and released into the air) and this contributes to the greenhouse effect / increases acidity of sea (1) It should be trapped / a use found for it. (1) [2]
- (d) (i) Water is acting as a proton donor (1) and this combines with the carbonate ion / CO₃², giving the hydrogencarbonate ion / HCO₃⁻ (1)
 [2]
 - (ii) The pH scale runs from 0-14 / measure of acidity / alkalinity (1) pH <7 acid / >7 alkali (1) acid stronger as pH value decreases / alkali stronger as pH value increases / 11.4 is strong alkali (1)
 [3]

Total [15]